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Maximal symmetry groups of quantum relativistic equations 

P Rudra 
Department of Physics, University o f  Kalyani, Kalyani, West Bengal, 741235, India 

Received 24 December 1985 

Abstract. We have used Lie’s extended group method to obtain the maximal symmetry 
groups of the Dirac equation for finite mass spin-f particles and the Weyl equation for 
zero mass spin-f particles. In both cases the maximal symmetry group is an infinite 
parameter Lie group having an invariant subgroup also of an infinite number of generators. 
The corresponding factor group for the Dirac equation is an eleven-parameter Lie group 
isomorphic to the Weyl group. In the case of the Weyl equation the corresponding factor 
group is a sixteen-parameter Lie group containing a proper subgroup isomorphic to the 
conformal group. 

1. Introduction 

The importance of the ten-parameter inhomogeneous Lorentz group (Wigner 1939) in 
relativistic quantum physics is that the Dirac equation for finite mass spin-f particles, 
the Weyl equation for zero mass spin-4 particles and the Maxwell equation for zero 
mass spin-1 particles can be obtained (Elliott and Dawber 1979, Lyubarskii 1960) from 
different irreducible representations of the inhomogeneous Lorentz group (also known 
as the PoincarC group). Yet it has been known from the beginning of this century 
(Bateman 1910) that Maxwell’s electrodynamic equations are invariant under the larger 
fifteen-pqrameter conformal group of Minkowski space. Gross (1964) showed the 
norm invariance of quantal relativistic equations for zero mass particles under the 
conformal group. Fulton er al (1962) discussed the role of conformal symmetry in 
different branches of physics including the Klein-Gordon equation for scalar fields 
and the Dirac equation. 

In a previous publication (Rudra 1986) we obtained the maximal symmetry group 
of the Hamilton-Jacobi equation for a non-quantal particle, both of finite mass and 
zero mass. Here we are interested to know what the maximal symmetry groups of the 
multicomponent equations of Dirac and Weyl are. By maximal symmetry group we 
mean the maximal Lie group for the transformations of the spacetime coordinates and 
the multicomponent wavefunction that keeps the form of the differential equation 
invariant. We have used Lie’s extended group method (Hamermesh 1984, Olver 1976, 
Rudra 1984, Sattinger 1977) ,to obtain these symmetry groups. Recently this method 
has been successfully used (Leach 1981, Prince and Leach 1980, Wulfman and 
Wybourne 1976) to obtain the maximal symmetry groups for the classical harmonic 
oscillator and Kepler motion. Our analysis of the two quantal relativistic equations 
shows that for each of them the maximal symmetry group is an infinite parameter Lie 
group having an infinite parameter invariant subgroup. The corresponding factor group 
for the Dirac equation is the eleven-parameter Weyl group consisting of the generators 
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of the PoincarC group and the scale transformation of the four-component wavefuhc- 
tion. The factor group for the Weyl equation for zero mass spin-f particles is a 
sixteen-parameter Lie group containing a proper subgroup isomorphic to the conformal 
group. 

In 0 2 we have described Lie's extended group method for obtaining the maximal 
symmetry group of a set of differential equations. Since our equations of interest are 
linear first-order partial differential equations, we have considered this case in some 
detail. In 90 3 and 4 we have applied the method to obtain the generators of the 
maximal symmetry groups for the Dirac and Weyl equations. 

2. Lie's extended group method 

We now describe Lie's extended group method and develop it in a form suitable for 
linear first-order partial differential equations of quantum relativistic physics. 

We consider a set of partial differential equations 

A"(q,Y; r ) = O  Q = 1, .  . . , p  (1) 

in s dependent variables Yk,  k = 1 , .  . . , s, and n independent variables ql, i = 1, .  . . , n. 
Here r denotes the highest order of partial derivatives of Yk.  We first construct a space 
of all variables and derivatives q', Y k  and Y$¶ where 

ji being non-negative integers. If 

is the generator in the product space (4, Y) then the rth extension X"' of X is given 
by 

x(') = x +E &(q, Y, v,)a/aY;. (4) 
k l S / J ( s r  

Here 

where 

~f = aYk/aq' ( J , i ) ~ ( j l , .  . . , ~ l - l ~ ~ l + ~ , ~ l + l ~ . .  .,jn) ( 6 )  

D J = f l W  with D, = a / a q l  +C Y$,la/aYf. (7) 

and 
n 

$ = I  k OSlJlGr 

The system of partial differential equations (1) has the maximal symmetry group 

(8) 
It is to be mentioned that in equations (3)-(8) the q', Y k  and Yf are to be considered 
as independent variables. On the left-hand side of equation (8)  we use equation (1) 

G with generators X if 

X'"A"(q, Y; r )  = O  Q = 1, .  . . , p .  
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and separately equate to zero the coefficients of different order partial derivatives of 
Pk and their products and thus obtain a set of partial differential equations for 5 and 
cp. The solutions of these partial differential equations give us the most general form 
of X and hence the maximal symmetry group. 

In the case of linear first-order partial differential equations of quantal relativistic 
physics 

Ak =Pt- a z m q 2  -e = O  k =  1,. . . , n (9) 
m a  m 

where the coordinates are r and x a ( a  = 1 ,2 ,3 ) .  We take the general form of the 
generator as 

In equation (9) the subscripts r and a denote partial differentiation with respect to r 
and xu respectively. Equation (8) now becomes 

X"'A= ( qI. . ~ - ; ~ ? m q m - x  a k z q m ; a + C  q / ; Y m a k k q k  
ma mk 

- 6: C a?mqm + a k k a L & ; q k  - a ? k a 0 , r 6 $ m q k V  
m mka mrk 

-e m t ' (aaym/ar)qm - ma c t a ( a a ~ ~ / a x a ) ~ m )  

In equation (11) the V k  subscripts also mean partial differentiation with respect to 
the V k .  

3. Maximal symmetry group of the Dirac equation 

We now solve equation (1 1) for the Dirac equation of finite mass spin-4 particles and 
obtain the corresponding maximal symmetry group. The four-component Dirac 9 
satisfies 

aV/ar+ LY - V q +  (imcl h ) p q  = 0 (12) 
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where 

a being the Pauli matrices and I the 2 x 2 identity matrix. We thus have four equations 
A"' = 0, m = 1, 2, 3,  4 corresponding to equation (9) with 

ayl = a;2 = -a:3 = -a& = -imc/ h a:, = = -ai3 = -ail = i 
(14) 

a;, = ai3 = ai2 = a:, = a;3 = a; ,  = -a;* = -a:2 = -1  

with all the other coefficients being zero. 
Equating to zero the different coefficients of U,"*:, we obtain 

,fgm = ,Ckm = 0 a = l , 2 , 3  and m = 1,2 ,3 ,4 .  (15 )  
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k, 1, m, n = non-negative integers, k + 1 + m + n = 3, a = 1,2,3.  Equations (19) and (15) 
give us 

6" = a, + bx" - eapybPx + b3+,7 - c, ( r2 - r2) + 2x" (; cPxP + c47 
PY 

1 \ 

(I 

6' = a,+ b ~ + z  b3+,xa + c4(r2 - r2) $27 

where r2 = 8, 
(17) and (15) give us 

enPy = permutation symbol, and a, b and care constants. Equations 

(Pk;Ym'Pn = 0 and thus (Pk(XP,  T, P) = qook(xp, q k ; ' Z " ( X u ,  (21) 
m 

Using equations (20) and (21) and equating to zero the coefficients of different qk in 
equation (18) we obtain 

~4 = C ,  = b = 0 ( ~ 1 ; ~ 3 =  G / 2 =  b6/2 ql; . I .~  = c =constant. 
We thus obtain 
6" = a, - eupybPxY + b3+,7 6'= a 4 + x  b3+,xa 

PY a 

ql  = qy+ CY' + ( b2 + ib1)q2/2 + b6q3/2 + ( b4 - ib5)q4/2 

q2 = 9:- ( b2 - ibI )q1/2+ (c  - ib3)qz/2+ ( b4+ib5)q3/2 - b6q4/2 
q3 = q! + b6q1/ 2 + ( b, - i b5)q2/ 2 + cP3  + ( b2 + i b I )q4/  2 

q4 = q:+ (b4+ ib5)P1/2 - b6q2/2 - (b2 - ibl)T3/2+ (c - i b 3 ) q 4 .  
Equating to zero the terms independent of T k  in equation (18), we obtain 

CP?;~+C a:"cpO,,h+(imc/h)CP,nqO,=o. (23) 
nh n 

It is evident from equation (23) that q: do not contain the a, b and c of equation 
(22). Thus the generators originating from c p i  are independent of those arising from 
t", 6' and (Pk;ym. We therefore concentrate our attention first on these latter generators. 
The eleven generators given by equation (22) are 

Xh = -ia/ax" 
x^,= -i eh,;spa/axu - t  &$.\uka/aqm 

X' = -ia/ar 

,U km 

where 

A , p , u = l , 2 , 3  and k ,m=l ,2 ,3 ,4 .  O u  
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Physically X A  and X' denote translations along x A  and T coordinates; X^,  denotes 
rotation about x A  axis together with transformation of *\Itk; X t  is the Lorentz boost 
along x A  coupled with transformation of ' P k ;  and X y  denotes scale transformation of 
'Pk. These eleven operators form a subgroup of the maximal symmetry group G of 
the Dirac equation. The proper subgroup H of c consisting of all the generators 
except X y  is isomorphic to the PoincarC group. 

We now turn to equation ( 2 3 ) .  Since we are investigating Lie group structures, we 
consider analytic solutions 
p; = ( n ! / n , ! n , ! n , ! n , ! ) ~ , ( n , ,  n 2 ,  n 3 ,  ~ , ) ( x ' ) " I ( x ~ ) " ~ ( x ~ ) " ~ ( T ) ~ ~  (26 )  

with n = n,+ n2+  n3+ n4, where K,(nl ,  n,, n 3 ,  n4) are constants. Equation (23 )  gives 
us the following recursion relation among these constants: 

K f ( n l ,  n 2 ,  n 3 ,  n 4 + 2 ) = K l ( n 1 + 2 ,  n 2 ,  n 3 ,  n 4 ) + K l ( n l ,  n 2 + 2 ,  n 3 ,  n4) 

+ K d n , ,  n2, n3+2 ,  n4>-[n!/(n+2)!I(mc/h)'K1(n,, n2,  n 3 ,  n4) 

with n = n , + n , + n 3 .  
Out of the total number 2 [ ( n + 3 ) ! / n ! ] / 3  of constants K , ( n , ,  n 2 ,  n 3 ,  n4), 

homogeneous of degree n = n, + n2 + n3 + n4, the number of independent constants is 
thus equal to 2( n + 1)( n + 2). These mutually commuting independent generators are 
infinite in number, forming the infinite parameter Lie group G,. G, is an invariant 
subgroup of G such that G/G,== c. Thus G is the semi-direct product G = G ,  6) G. 

We now obtain the general form of the generators of G,. Using equation (27 ) ,  
after some combinatorial calculation, we obtain 

C(~OnXn=CCC[(ni+n2+n3)! /n i !nz!n3!1C K n ( n l ,  n 2 ,  n3,O)Xn(nl, n2, n3)  
n n2 n3 n 
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and 

f ~ ( ~ ) = [ ( 2 s + l ) / ( m c r / h ) ~ ’ + l  3 j: (mer/ h)’”f:( r )  d( mcr/ h ) .  (28) 

Here we have used [XI as the integral part of any positive real number x and have 
written X, for -ia/aW. 

x:=xI cos(mcT/ii)-iCPT,X, sin(mcr/h) 

Xp=xPx: - (h /mc)  C a % * x n  s in (mc~/h )  

The first few generators of G ,  are 

n 

n 

+ a+( hr/ mc) X ,  sin( mcr/ h )  + i C PT,x, cos( mcr/ h )  

- i( h /  mcr) 1 @EXn sin( mcr/ 

( n 

n 

with non-vanishing commutation relations 

[XP, XT1 = ( m c / h )  C PT,X [X?, X*] = x: 
n 

4. Maximal symmetry group of the Weyl equation 

In this section we shall obtain the maximal symmetry group of the Weyl equation for 
zero mass spin-; particles. The two-component Weyl equation satisfies 

av/ar + U. vq = o r = c t  (30a) 
where U are Pauli matrices. We thus have two equations A“ = 0, m = 1,2, corresponding 
to equation (9), with 

U t k  = 0 (30b) a 3  * I  - , I  - 12 - - a:, = -a;* = -1 a:2 = -ail = i 

the other coefficients being zero. 
Equating to zero the different coefficients of *zTk, we obtain 

a = l ,  2, 3 m = 1, 2. (31) &p = tgm = 0 

Equating to zero the different coefficients of 92, we obtain 

t ; + S ! = O  a + P  6; - 6; = 5: -  6: = 0 a, p = 1,2,3 
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and 

cpl;\y2=f(rT-i5;)+4(5:-iS:) 
cpz;wl=f(t;+i5;) -tct:+is:, 

Qi;\yl-'P2;w2= &+i6:. 
Equating to zero the terms independent of q z ,  we obtain 

(PI;' + ~ 1 ~ 3  + ( ~ 2 ; 1 -  icp2,2 = ( ~ 2 ; '  - C P Z ; ~  + C P ~ ; I  + b 1 ; 2  = 0. 

From equation (31) it follows that 

a'5"/(a~')~(ax') ' (ax~)~(ar)"  = a35T / (ax ' )k (ax2) ' (ax ' ) " (a r )n  = o 
where k + 1 + m + n = 3. 

Equations (30) and (34) give us 

(33) 

(34) 

(35) 

6" = a, + bx" - C eaBybSxY + b3+,r - c,( r2 - T ~ )  + 2x" (4 cSxp + c4r 
B Y  

a 
5' = a4+ b r + C  b3+"xa + c4(r2- r2 )+2r  

where r2 = Z, ( x " ) ~ ,  (Y = 1, 2, 3 and a, b and c are constants. Equations (30) and (32) 
give us 

Q m ; U I U k  = 0 and thus q m  = (~Om(x", T ) + C  p m ; \ y n ( X U ,  T I T n .  (36) 
n 

Using equations (35) and (36) and equating to zero the coefficients of different Y"' in 
equation (33) we obtain 

C+ib3/2+b, /2-3C cPxP-3c4r 
P 

+E a G n b 3 + , / 2 + i ~  c r ~ n b P / 2 + c 4 ~ a ~ , x " + r ~  a',,c, 

- i  eA,,a~nc,xw 
P P P P 

A P  
(37) 

where C is a constant. Equating to zero the terms independent of V"' in equation 
(33), we obtain 

c p Y i 7  + ( P ? ; ~  + - i d ; ,  = cp;,, - + v ? ; ~  + = 0. (38) 
From equation (38) it is again evident that cp; do not contain the constants a, b and 
c and thus the generators obtained from the solutions of equation (38) are independent 
of those arising from t", 5' and (P,,,:~". In the latter category we obtain 16 generators 
corresponding to the proper subgroup 

X "  = -ia/ax" X ' =  -ia/ar xY = 

X ,  = Tala7 + x"a/ax" - txY 

X ; =  -i 

X ;  = ra/ax" +x"a/ar+f  Ca; ,*qkaa/av 

of the maximal symmetry group G, 

m 

LI 

eaB$'a/axy - f  C a;,*qka/aqm 
PY km 

km 

(39) 
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~ i = ( i / 2 ) ( r ~ - 7 ~ ) ~ ~ + 7 X ~ + i  e,BjSPXf;-~xaX\l' 

xi= - ( i / 2 ) ( r ' - ~ ~ ) ~ ' + E  X ~ X E - ~ T X '  

BY 

a, P, Y = 1,293 
n 

with the non-vanishing commutation relations 

[X", X,] = X" [x", xg]  = i C eaB,.Xy [ x n ,  XS,] = S,,X' 
Y 

3209 

[Xn, xt] = -iS,,X0-c enB,.Xf; 

[X', X,] = X' 

[X", X i ]  = -iXE 
Y 

[X', XE] = X" [XT, X i ]  = -iXE [X', X i ]  = -iXo 
(40) [XO, xi1 = xi 

[ K ,  x&1= i c e,B,.XE 

[Xf,  XS,I = i C e n p J i  

[XO, xi1 =xi [Xg, XgI = i 1 enpyx:  
Y 

[ K ,  X2l= i c e,pJX 

[XE, X!l= &,X:, 

Y Y 

[XE, X i ]  = x:. 
Y 

It should be noted that the subgroup consisting of the generators other than X' 
is isomorphic to the conformal group (Bateman 1910, Fulton et a1 1962, Gross 1964). 
The generator X' corresponds to the scale transformation '4" + sVm. It is also clear 
that Xg and XE are not pure rotations and Lorentz boosts in the coordinate space, 
but the V are also to be simultaneously transformed. However X t  = Xg+ XE is a 
symmetry operation without change in the 9"'. Physically X; is a screw transformation, 
being a simultaneous rotation about the xn  axis and a Lorentz boost along the same 
direction. 

We now determine the other generators of G given by equation (38). Because of 
our interest in the Lie group symmetry, we again use an expansion equation (26) and 
get the recursion relation 

K m ( n l ,  n2, n3, nd+2)=L(n i+2 ,  n2, n3, n 4 ) + K m ( n l ,  n2+2, n3, n4) 

Out of the total number of f( n + 3)!/ n ! constants K,( n, , n 2 ,  n3 ,  n4), homogeneous 
of degree n = n, + n2 + n3 + n4, the number of independent constants is thus equal to 
( n  + 1)( n + 2). Combinatorial calculation gives the independent generators 

~ ~ ( n , ,  n 2 ,  n3)= 1 (n,!n2!n3!s!/s,!s2!s3!) 
[ n P I  

r = O  S,+SZ+Sj=S 

/ 

x (  x,[72'/(2s)!] n [(x*)"*-2s*/(n, -2s,)!] 
II 

- (T$;xp[ T2'+'/(2S + 1) !][(X") n*-2s*-1 /( np - 2s, - l)!] 
FP 

where n = n, + n2 + n3. 
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These mutually commuting independent generators again form an infinite parameter 
Lie group G,, which is an invariant subgroup of G such that G/G,=G.  Thus G is 
again a semi-direct product G = G ,  @ G. The first few generators of G ,  are 

x" = x, x: = X'X" - T a::x: 
n 

(43) 
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